A primer on spinors

Virinchi Rallabhandi
24th March, 2021

The object of this treatise is to give a general mathematical overview of spinors “from first
principles.” In the perspective I'll take here, the “first principles” are representations of the
Clifford algebra; all properties of spinors are derived from studying irreducible representations
of the Clifford algebra. My presentation here is a collation of results in [1], [2], [3] and [4]]
My only contribution is to fill in some proofs which [3] and [4] did not have the courtesy of
providing.

1 Arbitrary spacetimes

The study of spinors is intimately connected with the representation theory of “Clifford alge-
bras.” A Clifford algebra is a set of D objects (which can be thought of as matrices as only
their representations in finite dimensional vector spaces are relevan, {7, Y27}, such that

{Ya, W} = YaW + WYa = —20ap] (1)

where 7., = diag(—1,--- —1,1,---1) with ¢ minus ones, s plus ones and s +¢ = D.

The first task is to study finite dimensional, complex, irreducible representations of this al-
gebra. As I'll show, for questions such as the existence, uniqueness and dimension of the
irreducible representations, it suffices to study the algebra, {v,, 7%} = 20451 .

Let {Fa, %} = =20, Yo =Y fort <a< D —1and v, =79, for 0 <a <t-—1.

Then, for a,b > t,

Yoo + WYa = Wal¥o + iVa = —(FaTo + WoVa) = 200l = 20a1 (2)
Likewise, for a,b < t,
Yoo + W Va = YaWb T WVa = —20apd = 2001 (3)
Finally, when one of a and b is less than ¢ and the other is greater than or equal to t,
YoV + WYa = (VoW + WVa) = —2i0apd = 0 = 20451 (4)

.. The original Clifford algebra can be transformed to one where —n,, — 4. Conversely, if
{Ya, W} = 2041, then letting 7, = v, for 0 < a <t—1and 7, = —iy, for t <a < D —1 yields

{Has W} = —2nap 1.
.. The two Clifford algebras are equivalent. For now consider {7, v5} = 20451.

'T have taken some proofs almost exactly as presented in these references.
2The Clifford algebra is assumed to be associative so that a matrix representation is well defined.



Let {7,}2=} be a finite dimensional, complex, irreducible representation of the Clifford al-
gebra, {V4, 7%} = 2041. Denote the dimension of the representation space by N.

Let {FA}iigl = {1, %a, VoY With a < b, v,y with a <b <c¢,--+ ;7 vp_1}. By definition,
all the I'y are N x N matrices.

Yoo + WVa = 20wl = (72)* = I and a7 = — Y7 for a # b.

S TA)? =Yy YauYay - Ya, forsome 0 <n < D—1landa; <--- <a, (5)
= '7@17(11(_1)”_17112 “ Yan Va2 Van (6)
= (_1>n_1'7a2 * YanYaz T Van (7)
— (_1>n71+n72+---+1[ (8)
_ (1 )

. All the T'4 are invertible and (["4)~! = (—1)*("=D/2T ;.
Lemma 1.1. G = {:I:I‘A}iD:Bl is a finite group of order 2P under multiplication.

Proof. That G has 2P*! elements follows directly from the definition.

Matrix multiplication is already associative.

The identity matrix, I, is I'g by definition and hence in G.

(£ 4) ' = £(=1)"D/21, € G.

.. All that’s left to show is that multiplication is a well defined binary operation on G.

Let I'a = Yo, - Yo, a0d Tp =, -, = Tul's = Yay = Ya Vo1 =+ Vou-

If a; # b;Vi, j, then changing the order of the v,, and 7, (at the expense of some —1 factors)
to make the sequence in ascending order of indices means I'yI'g € G. If a, = b; for some i
and j, then changing the order to make them adjacent means 7,7, = I and those two s are
removed. This can be done until no a; and b; are equal.

o.T'al'p € G again = The binary operation is well defined. O

{7, }2-} is irreducible <= there is no subspace of CV invariant under all ~,.

o As {7,325 € G, the elements of G also have no common invariant subspace.
.. The irreducible representation of the Clifford algebra has automatically lead to an irreducible
representation of GG in the same representation space.

Theorem 1.2. The dimension of an irreducible representation’s representation space N, can
only be 2P/2

Proof. Let Y be an arbitrary N x N matrix and let

2P 1
S=) (Ta) YT, (10)
A=0
where I've adopted the convention of explicitly showing all summations on the A, B, ... indices.
2P 1 2P 1
L (Tp) ST = (Tp) (Ta)'YTulp = > (Tal'p) 'YTuTp (11)
A=0 A=0

I'sI'4 € G and as I'p is invertible, FAer = ZEFAQFB — FA1 = :|:FA2.
{FAFB}ingl = {j:FC}ch:Bl where on the RHS, a + or — is chosen for each C' depending on



whether ['4I'p = I'c or ['4I'p = —T'¢ (hence {j:FC}%D:Bl has only half as many elements as

the group, G).

2b—1 2b—1
L (Tp)'STp = > (£I¢) 'Y(*£Io) = Y (o) 'YTe =8
=0 C=0
.8 = M for some A € C by Schur’s lemma.
2b—1
A=) (Ta) YTy
A=0
2P—1
cotr(M) = tr( > (FA)—1YFA>
A=0
2D 1 2P 1
AN =D () 'YTa) = ) r(Ta(Ta) YY) = 27t(Y)
A=0 A=0
D
20tr(Y') 20tr(Y) . =
A=t = = > (Ta) YTy
A=0
In the last equation,
2Py, 2P
LHS - Tkk(sw - W(Skléijykl
2P—1
RHS = Y (') aYiu(Ta)y
A=0
Then, since Y}, is arbitrary,
9D 2P -1
LHS = RHS = —=dud;; = > (3 uwTa)y
A=0
9D 2P -1 X
Ly 00 = > (TR
A=0
2P -1
= 27 =) r(Ta)tr((Ta) ™)
A=0

(12)

(13)

(14)

(15)

(17)

(18)

(19)

(20)

(21)

Let 'a = 74, -+ Ya, forsome 1 <n < D—1 (any I'4 other than 'y = I and I'yp_; =40+~ yp-1

can be written in such a form by definition).
2.3be{0,1,---, D — 1} such that b # a; Vi. Then, if n is odd,

() "' Ta% = YYar ** Vau W
= (1)*(=1)"Yay =~ * Yan
= (=1)"T'4
=-I'y asnisodd
(1) 'Tam) = tr(=Ta) <= tr(l4) = tr(~T4) = tr(['4) =0



On the other hand, if n is even,

(Yar) "' T a%ar = YarYar * ** Yan Yau (27)
= YarYar Yar (= 1) Vaz - * Van (28)
= (=1)" ey - Yan (29)
=—-I'y, asniseven (30)

. tr(T4) = 0 by the same logic as before.
Hence, in equation [2I] the only non-traceless matrices in the sum are when A = 0 and when
A=2P 1.

c2P =t + tr(yo - vp- )t (o - vp-1) ) (31)
= N? +tr(y0 - yp—1)tr((v0 - - - vp-1) ") (32)

It will now be necessary to consider D even and odd separately; I'll start with the former.

cotr(yo e yp-1) = tr(yp-170 - Yp—2) (33)

= tr(y0 -+ -1 (—1)P7) (34)

=tr(—yo---yp-1) as D is even (35)

cotr(yo - yp-1) =0 (36)
2P = N? (37)

N = 92D/2 _ 9lD/2] (38)

However, when D is odd,

YaY0 " YD-1 = Va0 Ya—1VaVa+1 " VD1 (39)
=%+ Ya-1Ya(=1)"YaVat1 - YD1 (40)
= Ya-1%a(=1)"at1 - Yp-17a(=1)P 77" (41)
=(=1)" "% -1 (42)
=7 Yp-1Y. as D is odd (43)

Then, since all elements of G are products of the s and possibly a factor of —1,

9% Yp-1 =" Yp-19 Vg €G.
%+ Yp—1 = M for some A € C\ {0} by Schur’s lemma (not the same A as before).

2P = N2 e (A Dte((AD ) 44
= N?+ (N)) (%) 45

= 2N?
. N = 9(D-1/2 _ olD/2)
Hence, for any dimension, D, N is uniquely determined to be 2L°/2. O

The previous theorem uniquely determines the representation space’s dimension, but as yet
I've said nothing about the number of inequivalent representations in CV.

Theorem 1.3. For even dimensions, a finite dimensional, complez, irreducible representation
of the Clifford algebra is unique up to equivalence, where as in odd dimensions, there are two
inequivalent representations related by a factor of —1.
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Proof. Let {7,}2= and {7,}2=' be two inequivalent, finite dimensional, complex irreducible
representations of the Clifford algebra. Let G and G be the two corresponding finite groups
generated as before. For an arbitrary N x N matrix, Y, this time let

S = 2 (TA)'YT, (48)
A=0

.. (FB)_lsz = i (FB)_l(FA)_1YfAfB (49)
A=0

- E(FAFB)‘lYfAfB (50)

= 3 (Pe) e (51)
C=0

=S (52)

. ST'p=TgS VB (53)

with the 3rd last line following by the same reasoning as equation 2] Now, since the repre-
sentations of G & G are inequivalent, ST'p =I'gS = S = 0 by Schur’s 2nd lemma.

2b 1

" Z (T3 iYa(Ta)y; =0 (54)

A=0
However, since Yy, is arbitrary, it must be that

2D _1

0= (3"l (55)

=) tr((Ta) )tr(Ta) (57)

A=0

For even D, it was shown in the proof of theorem that Ty = I is the only one of the I'4s
that is not traceless.

S 0=tr(IYHtr(I) = N* = N =0, contradicting theorem [1.2

.. For even dimensions, there could not have been two inequivalent representations to begin
with, thereby proving the 1st half of the theorem.

Meanwhile for odd D, it was shown in the proof of theorem that Ty = I and Tp_; = A
are the only non-traceless I 4s.

20 = (I te() + te((A) )t (M) (58)
Ny % e (59)
= —\ (60)

Because of this result, there cannot be a 3rd inequivalent representation as follows.
Let {7.}2-! be a 3rd inequivalent representation. Then, considering the three representations

>



pairwise, A = —X, ¥V = —=Xand N = —\. The Ist and 3rd of these equations together imply
N =\, which contradicts the 2nd equation.

There could yet be two inequivalent representations though. Let v, = —7,. Then,

YoV + AVa = (=) (=) + (=) (—7a) = Yo + WVa = 200 (61)

AT = {—7. 5 also satisfies the Clifford algebra.

Assume 3 an N x N matrix, A, such that 5, = A714,A for a contradiction.

SAo e Ap—1 = C'yC - Clyp C (62)
=C 1y -vp_1C (63)
=C'\IC (64)
=\ (65)

However, 3o --4p-1 = (=1)"70---yp-1 = =l
. Al = —\I, which contradicts A # 0.

. In odd dimensions, {7,}2°' and {—7,}2 are indeed inequivalent representations, hence
completing the proof of all parts of the theorem. Il

Having established these properties, it’s time to return to the general Clifford algebra,
{Ya, W} = —2nal, where the previous two theorems will continue to hold via the reasons
outlined earlier. Spinors can now be defined as the N components of CV, the representation
space of the Clifford algebra. As I'll outline, these spinors will allow representations of the spin
groups (the universal covering groups of SO'(s, )).

From hereon, let 7o ---vp_1 be denoted by vp1.

Let A% € SO'(s,t) and let v, = (A~1)® 7, i.e. as if 4* was a Lorentz vector.

S+ e = (MDA (reva + Yae) (66)
= —2ca(A71) (A7) T (67)
= —2n,] by the defining properties of SO'(s, ) (68)

S AP also satisfy the Clifford algebra.

.. In even dimensions, since the irreducible representation is unique, 3S(A) such that

vh = S(A)"1y,S(A). However, in odd dimensions, both v, = S(A)™'v,S(A) and

v, = S(A) " (=~4)S(A) could be possible by the previous theorem. Consider the latter case.

YD+1 =0 VYD-1 = ﬁe‘“""m%l “++Yap, by anticommutativity.

1

2 S(A) T pS(A) = 1™ P S(A) e, S(A) - S(A) M, S(A) (69)

_1 b e / /

_ N|) coranal Lt (70)
(_1)D ai-a —1\b —1\b

:Tgl D(A )1a1...(A )DaD’Ybl""be (71)
(_1)D =1\ b1-bp o/ /

= T det (A7) Py, (72)

= —vpy1 as Disodd and det(A™!) =1 (73)

However, I showed earlier that in odd dimensions, vp;1 = Al for some complex A # 0.
. The last equation says S(A)"!AIS(A) = =X <= X = —AX <= )\ = 0, which
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contradicts A # 0.
. Even in odd dimensions, v/ = S(A)~'4,S(A). Hence, in any dimension,

S(A1) 7 S(A2) eSS (A2)S (A1) = S(A) (AT 1S (Ay)

VGS(A2>S(A1)S(A2A1)_1 =5 AQ)S(Al)S(AQAl)_I/}/a

Since the last equation holds Va, gS(A)S(A1)S(AsA1)™t = S(A2)S(A1)S(AA) g Vg € G.
By Schur’s lemma, S(AQ)S(Al)S(AQAl)_I = f(AQ,Al)I < S(Al)S(Ag) = f(Al, Ag)S(AlAg)
for some f(A;,Ay) € C.

. S is a projective representation of SO (s, t).

In general, this is the best that can be done for SO'(s,t). However, since

S(A) 1y, S(A) = (AP v, is invariant under S(A) — BS(A) for any 8 € C\ {0}, S can be
extended to a representation of Spin(s,t), the universal covering group of SO'(s,¢). In this
case, it can be shownﬂ S can be made into a linear representation, rather than only a projec-
tive representation. This property distinguishes the spinor representation from other tensor
representations; spinors facilitate a representation of Spin(s, ¢), not SO'(s, t).

.. From henceforth, let S(A) = S(NN) where N is a pre-image of A under the covering map.

A natural way to generate a representation of Spin(s,t), is to exponentiateﬁ elements of
spin(s,t). Since a group and its universal cover are locally isomorphic, spin(s,t) = so'(s, t).

.. One must study the connection between Lorentz groups and Clifford algebras at the level of
Lie algebras. To do so, let My, = —%[%, o)

. (Mo, Mea] = 7[00, D] (79)

1
= 15 0a% =7 7% — Va7l (80)

1 1
= E(%% — WYa) (Ve Yd — VaVe) — 1—6(%%1 — YaYe) (Va6 — W Ya)V (81)
1
= 1—6(%%%%1 — YoV Yd Ve — Vo VaVeVd + VoVaYd Ve — Ve ¥dVa Vo + Ve Vd V6 Va
+ YaVeVa Vo — VaVe Vb Va) (82)

Using the Clifford algebra,

VYdVa Vo = =V VaVd Vo = 2Mad Ve Vo (83)

= YaYeVd Vo T 2NacYd Vo — 2Mad Ve Vo (84)

= —YaYeVVd — 2MdVaVe + 2MacVd Vo — 2Mad Ve Vo (85)

= Ya Ve Vd T 2M6cVaYd — 2ModVa Ve + 2NacVa Vs — 2MadVeYs  (86)

S Va6V Yd — VeV Va Ve = 2(Nad VeV — NacYa Vs + ModVaVe — MbeVaVd) (87)

3T will sketch how this can be done below and in the next section
41 will have an example in the next section



VeYdVoVa — W VaVeVds VdVeVa Vo — YaVoVd Ve A0 Vo YaYdVe — VdVeVoVa follow by relabelling indices.

1
S [Map, Meg) = g(nad%% — NacYd Vo + ModVaYe — Mo VaVd

+ NeaYoVd — NebVaVd + NdaYe Vo — NdbYceVa
+ NdvYaYe — Nda Vb Ve + NebYdVa — TeaYd Vo

+ MoeYaVa — ModVeVa + TacVoVd — NadVoVe) (88)

1
- Z(’r]ad [707 7b] + Nac h/ba ’Yd] + Tvd h/ay ,}/C] + Tve [’Yd7 7@]) (89)
= nadec - nachd + nbcMad - nbdMac (90)

S My, = —}1[7&, p) satisfy the Lie algebra of so'(3,1), i.e. My, are Lorentz generators.

It’s now time to study the effects of these transformation properties of the Clifford algebra
on the properties of spinors themselves. Spinors were originally used most prominently in
physics in the context of the Dirac equation,

(ivava - quaAa(x) - m)\Il(x) =0 (91)

where ¥ is a 21772 component spinor. To be a well defined equation of motion, the Dirac
equation must transform covariantly.

. Under a local Lorentz transformation, ¢/, (z) = (A7!)’.e,”(z), the Dirac equation must
be 0 = (iv*V/, — ¢y*A! () — m)¥'(x). This equation still has v*, not 7%, because despite
appearances, v* are supposed to be a set of constant matrices; they cannot be different for
different observers.

Since V, = A* V} and A, = A° A} the original Dirac equation can be re-written as

0= (17"Va4 — ¢v"Au(z) — m)¥(x) (92)
= (A’ (iV}, — qAy(x)) — m) ¥ () (93)

Earlier, I showed that 7/ = (A1) v, = ~. = S(A)"17,S(A) for some group representation,
S(A). Let T(A) be the corresponding representation for contravariant indiceg?}
iLe. Y4 =AY = "% =T(A)"9°T(A).

2 0= (T(A) TNV, — gAj(w)) — m)¥(x) (94)
=T(A) (v (iV,, — ¢A,(x)) — m)T(A)¥(z) (95)
2 0= (1"V, — " Ay (x) = m)T(A)¥(z) (96)

. It must be that ¥'(z) = T(A)¥(z). This defines the transformation property of spinors]

If one restricts attention to special relativity, then the transformation of interest is 2/ = A%z
Then, the Dirac equation is 0 = (i7*0, — ¢7*A.(z) — m)¥(z) and the transformation property
required of spinors is ¥'(z') = T(A)¥(x), or equivalently ¥'(z) = T(A)¥(A'z).

There are still many properties of spinors left to consider. For “calculation” purposes, it
will be useful to choose a basis in the spinor/representation space of the Clifford algebra. As
G is a finite group, 3 an inner product (that’s unique up to scaling) invariant under the action

5T and S might be equivalent representations, or even the same representation, but there’s nothing to gain
by being intelligent here. It will be fine to simply treat them separately.

6Rather than take the Dirac equation as fundamental and derive spinors’ transformation properties from
there, a more mathematical perspective would be to define spinors to transform as ¥'(z) = T'(A)¥(x) and use
that to prove the Dirac equation transforms covariantly.



of the representation. Since scaling is arbitrary, any scaling of this unique inner product can
be chosen. Then, choose a basis that’s orthonormal with respect to this inner product.

.. In this basis, all v, are unitary, i.e. v/ = (7,)7%

However, Yo% + Y7 = —20a] = (74)> = —7aa! (n0 sum).

(o)t =qafor0<a<t—Tand (7,) = -y, fort <a<s+t—1.

Syt =qfor0<a<t—landql =, fort<a<s+t—1.

Theorem 1.4. Let A= vyy1---v—1. Then, A is unitary and v} = (—1)"*1 Ay, A7L.

Proof. For 0 <a<t—1,v = ()™ =7,

SATA = (o) (Yo ) (97)
=% e (98)
=(y—1) " () M0 e (99)
=] = Ais unitary (100)

For 0 <b<t—1, (%) =1 and hence A~ = ;- 7.
Fort<a<s+t-—1,

(_1)t+1A%A_1 = (‘1)t+1’7’0 o Ye—1Ya V-1 " Yo (101)
= (=D Ma(=1)"0 -1 %0 (102)
= (=1)"*"y, (103)
= e (104)
=1 (105)

For0<a<t-1,

—
)
D

(_1>t+1A’YaA71 = (—1 tH’YO o Ye—=1Ya V-1 "0
w7 (no sum)

= (—1 t+170 e ’Vt—l'Yt—l PN f}/a(_:[)tiailfya e 70

I
—~
|
—_
<
|
—_
2
2
L
2
F
_
)
—_ =
o O
o

—~
—_
\Q@
o
\?Q
—
2
5
i
—
3
e N N e e N I N T
—_ =
=
o ©
~— O N N N~

= (_1 a’YO"'fyafIVafl"'fyOfya(_l) 111

= (—1)*7, 112

= Ya 113

=l 114
coyh = (=1)"1 Ay, A7t in general. O

To derive the next few results, restrict attention to the case of D being even.

(F7)"(£%)" + (£9%) (£72)" = (a¥ + W7a)” (115)

= (—2nal)" (116)

= =2l (117)

S AR P! also satisfy the Clifford algebra.
Since the irreducible representation of the Clifford algebra is unique in even dimensions, 3
matrices, By and By, such that v = B17,(B1)™ and —7} = Bov,(B2)~!. These two equations



can be wrapped together by saying 7 = uB~y,B~! where y = +1. Here u and B are taken to
be interdependent, e.g. if y =1, then B = B; while if 4 = —1, then B = B;.

Va = pBy.B™! = 7, =uB*y;B™" (118)
= uB*uBy,B~'B™* (119)
= B*B,(B*B)™! (120)
".YB*B = B*By, Va (121)
.. By Schur’s lemma, B*B = vI for some v € C\ {0}.
.. BB* = vI as well since a matrix and its inverse commute.
(BB =v'] = B*B=v"] = vl =v"] = v &R\ {0}. Then,
BB* = vl = det(BB*) = det(v]) (122)
- det(B)det(B*) = v*""*det(I) (123)
2" = |det(B)? (124)
For any k € C\ {0}, (kB)7y,(kB)™!' = By,B~! = 7.
.. B can be scaled without loss of generality as its definition only relies on uBvy,B~! = ~.
.. Scale B so that det(B) = 1.
- 2" =1 and hence v = +1.
Since 7, are unitary,
I =798 =700)" = vanB Ty BT (125)
I = (B, BT (126)
s I = p(vB g BT (127)
=y, B B! (128)
= 1’ By, B"' BT[B! (129)
= Bv,B'B I BT (130)
.B 'y, =Bv,B BT (131)
. 7B'B = B'By, Va (132)

.. By Schur’s lemma, B'B = pI for some p € C\ {0}. Hence, p = +1 by the exact same
reasoning by which v was constrained to be +1.

. For any vector, v € C2”* v Bt Bv = viplv = ||Bu||> = p||v||>. Then, as ||Bv||> > 0 and
||v]|* >, it must be that p > 0.

.. p =1, thereby making B unitary.

Theorem 1.5. Let C = BTA. Then, C is unitary and v = (—=1)"*uCr,C~1.

Proof. CTC' = (BTA)'BTA = ATB*BTA = AT(BB")*A = ATA =1 = ( is unitary.
For the other part of the proof, applying theorem along the way,

Ya = (W)’ (133)
= (1) Ay A7) (134)
= (=1 AT AT (135)
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A" = (0 w-1) (136)
=% " Vi (137)
= puByB™" - uBy1B (138)
1
= u'BAB™! — A" = —tBA_lB_1 (139)
i
B8 = G BAB ) a5 ) (A7) (140)
= (-1)""'uBAy, A7 B! (141)
B*B=vland BB B=1 = B*=vB' = B=vB".
Al = (-1 BT Ay, AT BT Ju (142)
= (1) 0,01 (143)
O
Consider the effect of B and C' on spinors in the context of the Dirac equation.
= (17"Va — ¢7"As — m)¥ (144)
.',O:( V"'V, — gy Ay — m)¥~ (145)
= (—iuBy*B™ 'V, — quBy*B~*A, — m)¥* (146)
= B(=ipy"Va — quy*Ag — m) B~ U (147)
20 = (—ipy*'Va — quy*A, — m)B Ly* (148)

- If 4 = —1, then B~1U* satisfies the same Dirac equation as ¥ but with ¢ — —q.

- If 4 = —1, then B~1U* describes the antiparticle of the particle described by .

On the other hand, if ;1 = 1, then B~!1U* satisfies the same Dirac equation as ¥ but with both
qg — —q and m — —m.

When p = —1, a particle is its own antiparticle if and only if B™'¥* = U <= U* = BU,

S U =(BY)"=BV*"=B*BY =p¥V — v=1.

Definition 1.6. If p = —1, v = 1 and V* = BV, then V¥ is called a Majorana spinor. If
pw=1v=1and V" = BY, then V¥ is called a pseudo-Majorana spinor.

If v = —1 and one has two spinors, V;(i = 1,2), then one can impose an “SU(2) reality
condition,” W' = (U,)* = €9 BY;. In this case, the p = —1 and p = 1 cases are called SU(2)
Magjorana and SU(2) pseudo-Majorana spinors respectively.

The matrix, C, can also be related to antiparticles as follows. From the Dirac equation,
0= ((1Y"Va — 7" Ay — m) W)’ (149)
= iV, (¥ (v = ¥ (v*) A, — mUT (150)
= iV, (U (=1 Ay AT — (=) qUT Ay AT A, — mTT (151)
= (—iV(UTA)(~ 1)y — (=1)1qUT Ay A, — muT) A~ (152)
Let UTA = W: ¥ is called the adjoint spinor.
_ <
\IJ((—l)t—Hi’}/ava + (—1)t+1q7aAa + m) (
(=D () Vo + (1) g(v) T Ay + m) 07T (154
(— (
(

.0
.0

1)t+1i(_1)t+1luc«,yac—lva + (—1)t+1q(—1)t+1u0’ya0_114a + m)\TJT
i7" Va + quy* Aq +m)C 1"

(
(
(

11



- Again, if 4 = —1, then C~'WU7T describes the antiparticle of the particle described by ¥. For
this reason, C W7 is denoted V¢ and C' is called the charge conjugation matrix. For reasons
unknown, B doesn’t have a special name despite serving a similar function. It is however no
coincidence that B~'W0* and C~1U” gerve the same purpose.

Theorem 1.7. B~'U* and C~"UT are proportional to each other.

Proof. C71UT = (BTA) N (U A)T = A7 B~TATU* = A~1(AB~)T U~

A* =~ -yf = puBywB ™' uBy B! = ' BAB™' — AB™' = !B A"

O*@T =t ATTAT BT

However, I showed earlier that B = vBT. Thus, B! =vB™7T <= BT =vB~!since v? = 1.
Meanwhile, for the other two matrices,

ATAT = (g0 o) T (o yem)] (157)
=% A (158)

= Ye—1"""0%-1""" Y0 (159)

— (_1>t71+t72+---+1[ (160)

= (—1)=02y (161)

o T = (-1t D2 gy (162)
U

As it happens, v and p are not independent.

Theorem 1.8. v is a function of u, t and s by

= cos(%(s - t)) - ,usin(%(s - t)) (163)

Proof. T've already shown BT = vB. Then, using theorems and

CcT = (BTA)T (164)
=% 1% B (165)
= (=) uCra O™ (1) uCrC™'B (166)
= ()" Cypy - 90C B (167)
= (=) (=) T Oy 0 OB (168)
= (=112 tcACB (169)
= (1) CAAT' BB (170)
:( 1)t(3t+l /2 tCVB lB (171)
= (=)D hC (172)

. B and C may be symmetric or antisymmetric (independently). To see how this is relevant,
con81der the group, G, introduced earlier. In particular, consider the subset, {T" A} i 1. Let

D
124:01 C4I'4 = 0 for some constants, C'y € C.

2D _1

s0= Z Cal'al'p (173)
A=0
2D _q

0= Catr(T4Tp) (174)

A=0
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However, I showed earlier that ['4I's = £I'¢ for some C' and tr(I'c¢) = 0 unless I'c = I (in
even dimensions).

tr(Fc) 7é 0 = I'g= (FA)_I =+I'y — A=B.

.. The sum in [174] collapses to C'g = 0.

As B is arbitrary, {T’ A}iD:’OI is a linearly independent set. The size of the set is 2P = 2P/2x2P/2,
which is the dimension of the vector space of 2P/2 x 2P/2 matrices.

{FA}ZD:Bl is a basis for the set of 2°/2 x 2P/2 matrices. This basis can be “antisymmetrised”
to {T'™}, where I'™ = 5, ---7,., i.e. rather than 7, -+ 7, with a; < ay < -+ < a,,
the indices are antisymmetrised. There are PC,, matrices of type, ['™. Furthermore, as C' is
invertible, {FA}ii_ol is a basis = {CFA}ZD:_Ol is a basis = {CT'™} is a basis.

(CTM)T = (r)rer (175)
= (Yar =+ Yau)) " (=)Dt C (176)
= ’V[En .. "ygﬂ(—l)t(t*l)m,utl/(? (177)
= (1) pCye, O (_1)t+1uc,yal]c—l(_1)t(t—1)/2,utl/0 (178)
_ (_1)n(t+1)un+tc(_1>t(t71)/2y(_1)n71+n72+---+1,7[a1 Y (179)
_ (_1)(n2+n+2nt7t+t2)/2un+tch(n) (180)

. Each of the CT'™ is either symmetric or antisymmetric.

.. Since every matrix can be decomposed into symmetric and antisymmetric parts, the anti-
symmetric CT(™ must form a basis for the antisymmetric 2°/2 x 2P/2 matrices.

However, the set of antisymmetric matrices is known to have dimension,

2D/202 — %QD/2<2D/2 _ 1).

. There are 12P/2(2P/2—1) antisymmetric CT™. To count the number of antisymmetric CT™,
note that there are 2C,, matrices of type, CT™, and 1(1 — (—1)(n*nt2ni=t+2)/2 ntty)y — () for

a symmetric CT'™ and 1 for an antisymmetric CT(™.

D
1 1 2 2
§2D/2(2D/2 o 1) _ Z 5(1 _ (_1)(n +n+2nt—t+t )/2un+tl/>DCn (181)
n=0
D
- 9D _ 2D/2 _ Z(l o (_1)(n2+n+2nt7t+t2)/2un+tV)Dcn (182)
n=0
D D
_ Z DC’n o I//Lt(—1>t(t_1)/2 Zun(_l)n(n+2t+l)/2 DCn (183)
n=0 n=0
D
- 2D/21ut(_1)t(t—1)/2 — UZDCnun(_l)n(n—f—Qt—‘rl)/Q (184)
n=0

By sheer dumb luck, or otherwise, guess that

(_1)n(n+2t+1)/2 _ (_1)nt

(LD + (1= 1) (=0)") (185)

Because of the periodicity in powers of 1 and i, this expression only needs to hold for n,t mod
4, to hold in general. I have checked the equation really does hold for those 16 combinations

13



on Mathematica.

2P (1) D2 ggm(—l)wl FII 4 (1 - 1)(—)")C, (186)
Stss ni;o(u(—l)t)”(in e (187)
Sths) (gm(—l)tw °C, ~ ié(—im—w Dcn) (188)
— %1/(1 + (1 +ip(-1)H)P =il —ip(—1)")") (189)

Since 1 4+ 1= v/2e¢"™* and 1 —i = v/2e7/4, the last line can be re-written as
2D/2Mt(_1)t(t_1)/2 — %V\/Eeiﬂ/ZlQD/Q(eip,(—l)tDTF/4 - eiTr/Qe—iu(—l)tDﬂ'/ll) (190)

yo V)R (191)

elTr/4(elp,( 1)tDr/4 _ gin/2a— 1p,(—1)tD7r/4>

Because of the periodicity of ¢®™4 and (—1)7, it only matters whether ¢ = 1 or —1 and what
s and t are modulo 8.
*. There are only 2 x 8 x 8 = 128 different cases. Again, by some miracle, one may guess that

i7r/4( in(=1)tDmr/4 _ i7r/2 —i,u(—l)tDﬂ/4)
e/ (e T . (T
NN = cos (Z(S — t)) — ,usm(z(s - t)) (192)

To check that this equation really holds, one only needs to check the 128 different cases - a
task I have completed with the aid of Mathematica. Finally, v = +1 — v = % and thus
v =cos(§(s —1t)) — psin(§(s —1)). O

Since equation [I15] the discussion has been limited to even dimensions. It’s now time to extend
the results to odd dimensions. Let D be even and let the odd dimension of interest be D + 1.
If D = s+t, assume without loss of generality that D+ 1 = (s+ 1) + ¢, i.e. a space dimension
is added. Let ypy1 =70 ---vp_1 as before.

S YD+1Ya = Y0 YD-1Ya (
=% "Ya " VD-17% (no sum) (
=% YaYa: Y1 (—1)P7 (
= (=)™ Va - "YD_1(—1)D_G_1 (
= ()" " (
= —,Yp+1 as D is even (

S YD+1Ya + YaVp+1 = 0= —2n, pl (199
Meanwhile, (’YD+1)2 = Yo YD1 - - - VD1 (

o (’VD71)2 (

(

(

(
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as D?/2 is even, (7,)? = I for timelike indices and (v,)?

= —1 for spacelike indices.
2 AYa, Y11 12 satisfies the Clifford algebra for s —t = 2 (mod 4) and {7,,ivps1}2,) satisfies
the Clifford algebra for s —¢ =0 (mod 4) (s —t = 1,3 (mod 4) are not possible for even D).
By theorems and [I.3] in odd dimensions, there are two inequivalent representations,
{Var 10113020 & {=va, =041 }is0 and {va, ivp 41tz & {—7a, —iypi1}iy Tespectively.
<. Unlike the even case, {77, Yhs1toco & {=75 =Vbr1taco and {75, —ivpii}ase &
{—%, 175 +1}£:_01 respectively are no longer equivalent.
. In % = uBv,B™!, i can on longer be freely chosen as 1 or —1. Instead, u will be fixed by
forcing 7.y = pBYp1 Bt or =iy, = puBiyp B
First, consider v}, = pByp4y1 B~

S uBYyp BT =p4, (205)
=% Vb1 (206)

— uByB™' - uByp_ B! (207)

= P’ Byp B! (208)

= uByB™" as D is even (209)

=1 (210)

Hence, when s —t = 2 (mod 4), p = 1. Similarly, —iv},, = pBiyp1 B~ = p = —1 when
s —t =0 (mod 4). These two equations can be summarised in one equation by

U= (_1)(s—t+2)/2.

To proceed, not that D + 1 odd, the irreducible representations still have dimension, 2°/2.

o A7 P can still be used to generate {FA}iD:Bl, which will still be a basis for 2°/2 x 2P/2
matrices. Furthermore, A’s properties only depend on ¢, not s. Likewise, in finding v = +1
and and the other results, I only needed 2°/2 is even, not D is even. In fact, looking back over
the proofs, all the properties continue to hold. The only difference is u = (—1)(S_t+2)/ 2 is fixed
rather than free.

Thus far, I have written odd dimensions as D+ 1 = (s+ 1) +t. To write odd D as s+¢, I will
have to let s — s — 1 in the theorems for odd dimensions. Overall, one gets the following.

Theorem 1.9 (Summary of results). For D = s+t (D may be odd or even) and D > 1,
o 1= (=12 4n odd dimensions.
e 1 can be freely chosen as 1 or —1 in even dimensions.

o vl = (1)t Ay, A7t where A =y y_1.

3 a matriz, B, such that v = uBy,B™ .

V= (=1 puC~,C~" where C = BT A.
e A, B and C are all unitary, B*B = vl forv = +1, BT = vB and CT = vut(—1){t-)/2C.
o v=cos(Z(s—t)) — psin(3(s —t)) in even dimensions.
o v=cos(5(s—t—1)) — psin(F(s — t — 1)) in odd dimensions.

Proof. See above O

[ am now in a position to evaluate all possible combinations of v, y and s — ¢t (v and p only
depend on s — t).
For s —¢t = 1,3,5,7 (mod 8), s —t —1 = 0,2,4,6 (mod 8) and hence y = —1,1,—1,1 and

15



v=-cos0+sin0 =1, cosm/2 +sinn/2 = —1, cosm + sinm = —1, cos37/2 + sin37/2 = 1.

In the even cases, p = +1 and s — ¢t =0,2,4,6 (mod 8) imply v = cos0 Fsin0 = 1,

cosm/2 Fsinm/2 = Fl, cosm Fsinm = —1, cos3n/2 Fsin3w/2 = £1. These results are
summarised in table [II

H v ‘ 0 ‘ Possible s —t mod 8 ‘ Antiparticle related spinor H

1 1 0,6, 7 pseudo-Majorana

1 ] -1 0,1, 2 Majorana

-1 1 2,3, 4 SU(2) pseudo-Majorana
-1 -1 4,5,6 SU(2) Majorana

Table 1: The antiparticle related spinors possible in different spacetimes

Besides the suite of Majorana like spinors, another special type of spinor relevant to physics is
the so-called Weyl spinor. Weyl spinors are defined as eigenvectors of yp, 1. However, I already
showed in equation (43| that in odd dimensions vp11Y, = VaYp+1 Va
= Yp+19 = 9Yp+1 Vg € G = 7yp41 < I by Schur’s lemma.
.. In odd dimensions, every spinor is an eigenvector of yp 1 and so the concept of a Weyl spinor
would be fruitless.

*. Define Weyl spinors to exist only for even dimensional spacetimes.
Rather than vp ;W = AW however, it is more customaryl to consider (—1)E=/4yp, U = \T
with (—1)'/2 defined to be —i without loss of generahtyl

A2 211

(—1)e/ m( 1)y W (211)
(—1)6=0/ “Yp-1%0 - Yp-1¥ (212)
(—1)6- t/2< )D LED=24 4 (y V2 (g1 )20 (213)
(—1)=0/2(—1)P=-D/2(_1)s Ty (214)
(—1) (215)

(216)

1) (50?245 —tyy 215
216

A= ()02

In even dimensions, s —t is also even and thus (s +1)?/4+ (s —t)/2 is an integer => \ = +1.
Eigenvectors with eigenvalues, +1 and —1, are called left handed Weyl spinors and right handed
Weyl spinors respectively.

Theorem 1.10. The eigenspaces of left handed and right handed Weyl spinors both have di-
mension, 2°/2=1 and hence their direct sum is the entire representation space.

Proof. In proving theorem , I showed that v/ = 7, for 0 < a <t —1 and 7/ = —~, for
t<a<s+t—-1.

Vhsrpr = b1 b0 (217)
= (=1)*yp-1---70Y VD1 (218)
(=1)*(=1)°I (219)
(220)

I

’y;rj 41 commutes with yp1, 1.e. yp41 is @ “normal” operator and thus diagonalisable.
‘. The sum of the dimensions of eigenspaces of A =1 and A = —1 equals the dimension of the
full space, namely 2°/2.

"With the benefit of hindsight, the eigenvalues are nicer with this convention
8 As opposed to (—1)1/2 =i
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Next, let (—1)9/4y, & = £W. As D is even, by equation , {Ya, Y011} = 0.
cA(=D)E Ay 1y, U = — (1) Ay U = F, 0.

- If Wisin the + eigenspace, then 7,V is in the F eigenspace. However, all the ~, are invertible.
.. Y. induces a bijection between the £ eigenspace to the F eigenspace.

. The + eigenspaces must have the same dimension, namely 127/2 = 2P/271, O

The component of an arbitrary spinor, ¥, in each of these eigenspaces can be found by the
projection operators, Py = %(I + (—1)9/%p, 1), since Py + P_ = I and (using equation m
and s — ¢ being even)

1
(=) yp  PLW = 5(_1)(8%)/4’7D+1(I + (=1)¢ Y yp ) (221)

1 _ 1 o

= (D o W (=) (p40)°W (22
1 1

= L LRy
1 1

- 5(_1)@—0/4%,“\1; v (224)

1
=+ (T (=) p 1 D) (225)
1P (226)

Since Weyl spinors can be constructed in any even dimension and (by table Majorana
spinors can be constructed when s —¢ =0, 1,2 (mod 8), the double of a Majorana-Weyl spinor
is possible when s —¢ = 0,2 (mod 8).

2 Three space and one time dimension

Up to now, I've considered spinors very generally. For a specific example, consider the case
most relevant to physics, namely s = 3 and t = 1.

. D =4,2P/2 = 4 and there is a unique irreducible representationﬂ of the Clifford algebra (up
to equivalence).

.. It suffices to guess this representation (and thereby prove its existence too). I will use the
so-called “Weyl representation,”

Yo = L}O %“] where 0, = (I,01,09,03), 64 = (I,—01,—09, —03) (227)

a

and o1, 09 & o3 are the Pauli matrices.

[0 o,| [0 o 0 o 0 o,
S Y%+ W Ye = 5. 0] {51) Ob} + {51) Ob} [5(1 0] (228)
. _O'aa'b + O'b(}a 0
- L 0 5-a0-b + 5’b0'a:| <229)
. -_27]abl 0
= 0 —277(11)]] (230)
= —2n,4] = the Clifford algebra is satisfied (231)

Next, it must be shown that the chosen representation is irreducible. Let S be a non-empty
suspace of C* invariant under all .

9Thus far, I have only proven theorems about the uniqueness of representations, not existence.
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- Vv e C*and Va € {0,1,2,3}, v,v € S.

S Y €S as v = v for some v’ € S and thus y,0" € S.
Likewise, VA1, A2 € C, (AM7a + Xow)v € S as y,0,%v € S and S is closed under linear

combinations by virtue of being a subspace.

.S is invariant under all products and linear combinations of 7, and thus invariant under all

linear combinations of elements in G = {4},

1 000] 0010
0100/ 0001
{FA}AO_{0010’1000’
0001l 0100
[0 —1 0 0] [Oo i 0O
-1 0 0 0| |=i 00
0 0 0 1]’[0 00
I 010__01
[0 1 0 0] [ 0
—1000—100
0.0 0 1I7f0 0 0
(0 0 -10] [0 O
'000—100—1
0 0 —i 0 00 0
0 —i 0 0f|'|li 0 0
—i 0 0 0 0 i 0

. By direct evaluation (on Mathematica),

0 0 0 1 0 0 0 —i 0O 01 0
0 0O 1 0 0 01 O 0O 0 0 -1
O -1 0 0f’fO0 1 0 Of’|-1 0 0 O
0O 0 0 -1 0 0 O 0O 1 0 O
0 -1 0 0 O -1 0 0 O
O 0O 1 0 O 0O 1 0 O
0 01 O 0 0 —1 0f”°
O 0O 0 O 0 0 0 1
0 0 0 0O 0 0 1
O 0 O i 0 0 -1 0
O 0 of’Jo 1 o0 of”
O i 0 0 -1 0 0 O
i 0 0
—i 01 O O
O[710 0 -1 O } (232)
0 0 0 0 -1

However, by inspection, complex linear combinations of these matrices can produce any 4 x 4
complex matrix (e.g. look at the 4 matricex subsets {0, 7, 8, 15}, {1, 4, 11, 14}, {2, 3, 12, 13}
and {5, 6, 9, 10} with matrices labelled as per the order in which they are listed above).

.S is invariant under all 4 x 4 matrices.

S =Ct

*. The Weyl representation of the Clifford algebra is indeed irreducible.

The Weyl representation is also unitary under the standard inner product of C* since ’yg

= —7;. As for Weyl spinors,

(_1)(3%)/475 =

and ]

(1)

v e 8 8

=70

L (233)

1B S A Bt
ﬂ hal _?UJ (235)
(236)

(237)

*. span({(1,0,0,0),(0,1,0,0)}) and span({(0,0,1,0),(0,0,0,1)}) are the eigenspaces of left
handed and right handed Weyl spinors respectively. To reflect this, the 4-component spinor,

%

W, can be written as W =

, where 9, and ¥* are 2-component Weyl spinors. Undotted

and dotted indices are left handed and right handed respectively.
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As shown by equation , My, = —%[%, ) are Lorentz generators in spinor space. Let
Oup = —;11(%517 —0p0,) and Gy, = —%(&a% — Gp04). Oap and Gy are called left handed and right
handed Lorentz generators respectively because

w==i (e Gl 8-l 6 ) e

. 1 O'aé'b - ab(}a 0
=71 [ 0 Guon- abaj 239
o O
_ {ob &GJ (240)
. _ | Oab 0 wa o O'abwa
Mol = {0 &ab] {xd} - {a—abxd} (241)

MV must still be a spinor of the same type as .
. Oapthe must be a left handed Weyl spinor and G4, ¥* must be a right handed Weyl spinor.
.. Since M, only induces a linear transformation, the spinor indices of o, and 7, must be
(Uab)o/g W
B (5'ab>d3)_(ﬁ )
This gives the so-called (3,0) and (0, 1) representations of the Lie algebra, s0'(3,1), namely

(oa),” and (G4)%, respectively = M,V = (

M (Vo) = (0a), s and Myp(YY) = (Gap)® B)‘(B respectively. Furthermore, for o, and &,
to have the indices they do (in type and position), the spinor indices of the extended Pauli
matrices must be (04)as and (6%)*“. Finally, by direct evaluation, one finds

0 o1 op! 03 0 —o1 —0oy —o3

1 |—0o 0 o3 —lio - 1|0 0 oy —lo

6 — _ 1 3 2 ~ o = 1 3 2
(Uab>a — 2 —0y _i0—3 0 io‘l and (Uab> B 2 | o9 —i03 0 iUl <242)

—03 10'2 —iO'l 0 03 iO'Q —10'1 0

This was all at the level of the Lie algebra. To get to the Lie group, one must use the exponential
map. The universal covering group of SO'(3,1) is SL(2, C) and thus the exponential map will
generate representations of SL(2, C), not SO'(3, 1).

Let I+ M € SL(2,C) for infinitesimal M. Thus, 1 =det(/ +M) = 1+tr(M) = tr(M) = 0.
.. Since the Pauli matrices are a basis for traceless 2 x 2 matrices, sl(2,C) = {z;0;|z; € C3}.
However, that’s the complex Lie algebra. To get the real Lie algebra, let

1 1 1

7 = §(K°1 +iK?®), 25 = §(KOQ +iK*) and 2, = 5(}(03 +iK'?) (243)
1

= 20, = 5((KO1 +iK*) o, + (K +1K* oy + (K +1K'%)03) (244)

for K% € R. Not all the K have been defined yet; that is most conveniently accomplishe
by letting K% = — K%,

1
§Kab0'ab = K010'01 + K020'02 + K030'03 + K120'12 + K130'13 + K230'23 (245)
1
— 5( K% + K%0y + K%®03 + K03 — Kioy + K*i0y) (246)
1
= 5(( K% +iK*)o; + (K2 + 1K) oy + (K +1K"'%)03) (247)

Owith the benefit of hindsight
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L sl(2,C) = {LK®(0y),| K® = —K™ € R}
- As SL(2,C) is simply connected, {N,# = ef*(w)a"/2| b — _[be ¢ R} is a dense subset
of SL(2,C).

Via equation [96} I showed that under 4/* = A%~ = T(A)~'4°T(A), ¥'(z) = T(A)¥. T com-
mented that representation of the Lorentz group, T'(A), could be extended to a representation
of the universal covering group. This is exactly what I’ll do now using the exponential map. As
the Lorentz generators when acting on 4-component spinors are My, T(N) = 5" Mab/2 The
factor of a half is necessary in the exponential because so'(3,1) is only 6 dimensional, where

as K%M, double counts the 6 independent My, via K**My, = (—K®)(—My).

S T(N) = M/ (249)
1 gab |:(O-ab)a/8 0 . :|
2 ~ a
=e 0 ) B (250)
> 1 Kab " (Uab) B 0 "
=) |5 Y s e 251
Yal) [ e, 2l
=1 K\ [((0a),”)" 0
-\ = @ ~ \a \n 252
;m(z) [ 0 ((Gw)) (252)
K% (045)0” /2
e 0
- [ 0 eKab(&“b)af?ﬂ] (253)
I've already shown ef*’(a)a’/2 = NP Let M = ) /2
1
§K‘lb&ab = K"601 + K%605 + K603 + K'?615 + K615 + K*643 (254)
1
= 5(= K% — K%0y — K¥03 4+ 1K %03 — iK% 0y + iK% 0y) (255)

1
= 5((-KOl +iK®) o, + (—K? +iK*Y oy 4+ (K% 4+ 1K'?)03)

*

(256)
(257)
M=o (259)
(259)
(260)

. MT — e—zioj = e %% — N—l «— M = A]\f_Jr 259
S T(N)W = "M/ 2 260

5 o] [1]
_ |Ha AR I 261
{ 0 (N7 5] X7 200

N, s ]
N (262)
[(N )BX

. Under the ($,0) and (0, §) representations of SL(2,C), left and right handed Weyl spinors
respectively transform as ¢/, = N, P15 and Y& = (N_T)dﬁ)_(ﬁ = )‘(B(N_*)Bd. One subtlety of

this result (in particular the block diagonal form of K" Man/ 2) is that although the represen-

tation of the CLifford algebra is irreducible, the induced SL(2,C) representation is not. The
latter’s irreducible components are the spaces of left handed and right handed spinors.

Since N € SL(2,C) = det(N) = 1, NNy e, = eqp and e (N71) *(N 1) P = gof

m
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where ¢,5 and £ are antisymmetric tensors with e1o = —1 and €2 = 1.

. As £,p and %7 are invariant tensors of SL(2,C) and e*7e. 5 = 0%, they can be used to raise
and lower indices. .

)_(; = é?dﬁ')_(lﬁ = 80-55)_(#(]\7_*)#’8.
N, FNg e = €ap <= €= NeNT in matrix notation.

S N7le=eNT = .—Nfls = —;NT — NflsT =eI'NT = %B(N**)f = 5ﬁ-ﬁ(N*)dB

S X = 50_[5,)—(&(]\[—*)16 = Eﬁy(N*)aﬁQ_(ﬁ = (N*)aﬁfég

Similarly, raising the index on the left handed spinor, 1)'® = £ Yy = PN 5 Y1,
(NN =¥ = e=N"TeN"' = eN=N"Te = N7 = (N7");%™.
e = 50‘5N57¢7 = (Nfl)ﬁ%ml/)w = 1/1’8(]\[71),3&

Having established these transformation properties, one can noew develop the 2-component
spinor formalism via tensor products, index raising/lowering etc. like for other tensor types.

The 2-component spinor formalism was based on writing the full spinor space as a direct
sum of left handed and right handed Weyl spinors. However, I also spent many pages earlier
considering Majorana spinors and it would be incomplete of me not not consider them in the
special case of s —t =3 — 1 = 2 where (by table (1)) they do exist.

By definition and theorem [[.7, a 4-component spinor is Majorana if and only if ¥ =
vt (—1)1- 1/26’ W =1 x (-1)Y(-1)>02C~9T = T —= ¥T = OV,

It suffices to guess C' by forcing it to satisfy theorem[I.5]and equation[I72] Withv =1, = —1
and t = 1, they say C'C = I, v = —Cv,C~! and CT = —C. Guided by the antisymmetry
and the block diagonal nature of the Weyl representation, try

[0 10 0]
-1 00 0
=10 00 -1 (263)

[0 01 0]
(0 -1 0 0][0O 1 0 O 1 000
1 0 0 0|l|-100 O 0100

e _ _

”Co_o 0 0 1|10 00—1_0010_[ (264)
0 0 -1 0/[0 01 0 0001

. C7! = —C by the previous line and thus —Cv,C~! = Cv,C. Also, C' can also be written
slightly more compactly as

C= [g 5] where € = [_01 (1)} (265)
. 1 _le 0 0 0] 0 —E0,E
~oue —{0 | B Py 200
B 0 1 1] [-1 0] o
e —ete= [0 10 N[ 0] 50
(o 1]fo 1][o 1] o 1][-1 0] Jo 1] 5
ET 1 o) 1 0] {—1 o] - {—1 0] {0 1} - [1 0} e (268)
o 1o —i]Jo 1] _[o 1]fi o] [o i]
=1 0] i 0} {—1 0] - {—1 0] [0 i] - {—i 0}_"2 (269)
(o 1]t o]Jo 1] _[o 1][o 1] 1 0] o
=11 0] o —1} {—1 0} - {—1 0] {1 0] - {0 —1] =os  (200)
o R N
. —Cv,C™ = N since 6, = (I, —0y) (271)
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*. The chosen matrix for C' can indeed be used as the charge conjugation matrix.

0 1.0 O w —T
-1 0 0 O T w
S =CU = 0 00 -1 |y| == (272)
0O 01 O z —y
Meanwhile, U7 = (¥TA4)" (273)
= AT (274)
A (275)
(0 0 1 0] [w
00 0 1f |z
1100 of v (276)
010 0|2
o
e
- |2 277)
_x*
[ w
T =0T — U= _Z* (278)
_w*

In the 2-component spinor notation, (Zj) would be denoted as v,,.

el [

Conjugation swaps dotted and undotted spinor indices since 9!, = N, P14

= ()" = (N*),?(¢p)* (and likewise for conjugating an initially dotted spinor) which is the
transformation of right handed Weyl spinor as shown earlier. For this reason, (¢,)* can be
denoted as 1.

.. The most general Majorana spinor for s =3 andt =11is ¥ = (7%3)
Finally, it’s worth checking that despite appearances, spinor representations are not the same
as vector representations. It is often remarked (e.g. by quoting Michael Atiyah) that spinors
are like the square root of a vector. That is because of arguments like the one below.

Let 6% + X% € SO'(3,1) for infinitesimal X¢.

ol =det(0% + X%) =1+tr(X) = X =0.

Also, Napy = 0ea(0¢, + X ) (0% + X%) = nap + Xpo + Xap = Xpo = —Xop. Antisymmetry
automatically implies tracelessness; thus so'(3, 1) consists of all 4 x 4 antisymmetric matrices.
oA = eK"Sw/2 ¢ SOT(3,1) where S, is a basis (with 6 independent elements) for 4 x 4
antisymmetric matrices. The corresponding group action on 4-component spinors is

] ey (279)

w
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T(A) = T(N) = eK"Mat/2 The standard basis for 4 x 4 antisymmetric matrices is

0 100 0 010 0 001 0 0 0O

g = -1 0 0 0 0 000 0 000 0 0 10

ab = o 00O0f"|-10O0O0"[0 O0O0OO"”(0 -1 00|

0 000 0 000 -1 0 0 0 0 0 00
0 0 00 00 0 O
0 0 01 00 0 O
0O 0 00”00 0 1 } (280)
0 -1 00 00 -10

It can be checked that S, satisfies the Lie algebra generator commutation relations for so’(3, 1).
By Rodrigues’ formula and other related identities, if (n,,n,,n.) is a unit vector of R*, then

e?4 where
0 N, —TMy
A=|-n, 0 ny |, (281)
ny —ny 0

is a rotation of # about 7. A can be represented in term of 4 x 4 matrices via

0 0 00 00 00 00 0 0
0 0 10 00 01 00 0 0
A=n10 4 00l ™o 0 00/ T™|00 o0 1 (282)
0 0 00 0 -1 0 0 00 —1 0
= 712512 - ny513 -+ TLISQ?, (283)

and thus e?4 = /(=Siz=mySistn:923) ¢ SOT(3,1). The corresponding representation on spinor
space is

T(N) _ e@(nzM12—nyM13+n:cM23) (284)
9(n 712 0 —n 913 0 +n 923 0 )
—e O 5-12 Y 0 6'13 O 6'23 (285)
10 |01 + Nyo2 + .03 0
e 2 0 Nz01 + Ny02 + N,03 (286)
[ @i07-5/2 0
= 0 oif7i-5/2 (287)
_,.42:_ n? Ng — 1Ny n® Ng — 1Ny,
(7-7) |y + 1Ny, —n, ] {nw +1ny, —n, 1 (288)
(n? +n2 +n? 0
— z x Y
I 0 n2 + nfj + n? (289)
=1 asl|li||=1 (290)
S =1 i\

. Li07-5/2 — i = 2\m 291
e n;)m!<2) (7 - 7) (291)
00 1 19 2m 00 1 10 2m—+1
=7 R n-o — | = 292

> ailz) *TOL Gurnila) 2
=cos(6/2)1 +isin(0/2)71 - & (293)
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Notice that a rotation of 6 has lead to a rotation of only #/2 in the cos and sin terms acting
on spinor space.
e.g. Let = 2r = A =% =] as a 27 rotation does nothing. However,
_ |cos(m)] +isin(m)ii - & 0
TN) = 0 cos(m)I + isin(m)7 - & (294)

=1 (295)

. T(N)¥ = —U under a 27 rotation.

.. One needs to do a full 27 rotation twice to return the spinor, ¥, to its original state.

.. The spinor representation really is different to the vector representation. This essentially
reflects the fact that the spinor is transforming under SL(2, C), not SO'(3,1). The
SL(2,C)/Zy = SO'(3, 1) isomorphism means N and —N both correspond to the same Lorentz
transformation, A. That is why A = I can still lead to T'(N) = —1I; the two are related by the
Zs quotienting.
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